
mothergeo Documentation
Release 0.0.1

Pat Daburu

Feb 27, 2020

CONTENTS

1 Development 3
1.1 Python Module Dependencies . 3
1.2 Design Considerations . 4
1.3 Source Control . 4
1.4 How To. 4
1.5 Miscellany . 15

2 Indices and tables 17

i

ii

mothergeo Documentation, Release 0.0.1

Word to your mother.

CONTENTS 1

mothergeo Documentation, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

DEVELOPMENT

mothergeo is under active development.

1.1 Python Module Dependencies

The requirements.txt file contains this project’s module dependencies. You can install these dependencies
using pip.

pip install -r requirements.txt

1.1.1 requirements.txt

alabaster==0.7.12
Babel==2.8.0
certifi==2019.11.28
chardet==3.0.4
docutils==0.16
idna==2.8
imagesize==1.2.0
Jinja2==2.10.3
MarkupSafe==1.1.1
packaging==20.1
Pygments==2.5.2
pyparsing==2.4.6
pytz==2019.3
requests==2.22.0
six==1.14.0
snowballstemmer==2.0.0
Sphinx==2.3.1
sphinx-rtd-theme==0.4.3
sphinxcontrib-applehelp==1.0.1
sphinxcontrib-devhelp==1.0.1
sphinxcontrib-htmlhelp==1.0.2
sphinxcontrib-jsmath==1.0.1
sphinxcontrib-qthelp==1.0.2
sphinxcontrib-serializinghtml==1.1.3
urllib3==1.25.8

3

mothergeo Documentation, Release 0.0.1

1.2 Design Considerations

Coming soon.

1.3 Source Control

Coming soon.

1.4 How To. . .

1.4.1 How to Use an Alternate PyPI (Package Index)

The Python Package Index (PyPI) works great, but there may be times when, for whatever reason, you need to host
packages elsewhere. You can set up your own index, or you can use a hosted service like Gemfury.

This article describes, in general terms, some of the things you’ll need to do in your development environment to make
your use of an alternate package index a little smoother.

Installing Modules with pip

One of the tricks to installing packages from your alternate repository is telling pip about it.

pip.ini

While you can use command line parameters with pip to indicate the location of your package index server, you can
also modify (or create) a special pip configuration file called pip.ini that will allow you install packages from the
command line just as you would if you were installing them from the public repositories.

Windows

On Windows, you can place a pip.ini file at %APPDATA%\pip\pip.ini. Use the extra-index-url op-
tion to tell pip where your alternate package index lives. If your package index doesn’t support SSL, you can
supress warnings by identifying it as a trusted-host. The example below assumes the name of your server is
pypi.mydomain.com and you’re running on non-standard port 8080.

[global]
extra-index-url = http://pypi.mydomain.com:8080

[install]
trusted-host = pypi.mydomain.com

4 Chapter 1. Development

https://pypi.python.org/pypi
https://gemfury.com/l/pypi-server

mothergeo Documentation, Release 0.0.1

Linux

Coming soon.

Note: If you are using SSL with a verified certificate, you won’t need the trusted-host directive.

Publishing Modules

This article doesn’t go into much detail on the general process of publishing modules, but we’ll assume that you’re
using setuptools to publish.

.pypirc

You can automate the process of publishing your package with distutils by modifying the .pypirc file in your
home directory. This file typically contains the common public indexes, but you can also add your alternate index.
The example below assumes you’re using Gemfury, but the format will be fundamentally similar regardless of where
you’re hosting your repository.

[distutils]
index-servers =

pypi
fury

[pypi]
username=mypypiuser
password=$ecret-Pa$$w0rd

[fury]
repository: https://pypi.fury.io/myfuryusername/
username: $ecret-K3y!
password:

With that in place, you can build and upload your package by identifying the configured index server name.

python setup.py sdist upload -r fury

Note: Rembemer that the keys and passwords in your .pypirc are secrets, and should be kept away from prying eyes.

1.4.2 How To Document Your Code

Coming Soon.

1.4. How To. . . 5

https://pypi.python.org/pypi/setuptools
https://gemfury.com/l/pypi-server

mothergeo Documentation, Release 0.0.1

1.4.3 How To Set Up Your Development Environment

This article describes the steps you can follow to get the mothergeo-py project set up for development.

Get the Source

This project is managed under source control in GitHub, so you’ll need to install git. Once you have that going,
getting the latest version of the code is just a matter of cloning the repository into your development directory.

git clone https://github.com/patdaburu/mothergeo-py.git

Get the Requirements

The project uses a number of modules that are available from the PyPI package repository. All of the required modules
should be listed in the requirements.txt file in the root directory, and you can get them using pip.

pip install -r requirements.txt

1.4.4 How To Install GDAL/OGR Packages on Ubuntu

GDAL is a translator library for raster and vector geospatial data formats.

OGR Simple Features Library is a C++ open source library (and commandline tools) providing read (and sometimes
write) access to a variety of vector file formats including ESRI Shapefiles, S-57, SDTS, PostGIS, Oracle Spatial, and
Mapinfo mid/mif and TAB formats.

OGR is a part of the GDAL library.

GDAL/OGR are used in numerous GIS software projects and, lucky for us, there are bindings for python. In fact, you
may want to check out the Python GDAL/OGR Cookbook.

This article describes a process you can follow to install GDAL/OGR on Ubuntu.

Before You Begin: Python 3.6

If you are installing the GDAL/OGR packages into a virtual environment based on Python 3.6, you may need to install
the python3.6-dev package.

sudo apt-get install python3.6-dev

For more information about creating virtual environments on Ubuntu 16.04 LTS, see A Note About Python 3.6 and
Ubuntu 16.04 LTS.

6 Chapter 1. Development

https://pypi.python.org/pypi
http://gdal.org/
http://gdal.org/1.11/ogr/
https://trac.osgeo.org/gdal/wiki/SoftwareUsingGdal
https://pypi.python.org/pypi/GDAL
https://pcjericks.github.io/py-gdalogr-cookbook/
https://packages.ubuntu.com/zesty/python3.6-dev

mothergeo Documentation, Release 0.0.1

Install GDAL/OGR

Much of this section is taken from a really helpful blog post by Sara Safavi. Follow these steps to get GDAL/OGR
installed.

To get the latest GDAL/OGR version, add the PPA to your sources, then install the gdal-bin package (this should
automatically grab any necessary dependencies, including at least the relevant libgdal version).

sudo add-apt-repository ppa:ubuntugis/ppa

Once you add the repository, go ahead and update your source packages.

sudo apt-get update

Now you should be able to install the GDAL/OGR package.

sudo apt-get install gdal-bin

To verify the installation, you can run ogrinfo --version.

ogrinfo --version

You will need the GDAL version to install the correct python bindings.

Install GDAL for Python

Before installing the GDAL Python libraries, you’ll need to install the GDAL development libraries.

sudo apt-get install libgdal-dev

You’ll also need to export a couple of environment variables for the compiler.

export CPLUS_INCLUDE_PATH=/usr/include/gdal
export C_INCLUDE_PATH=/usr/include/gdal

Now you can use pip to install the Python GDAL bindings.

pip install GDAL==<GDAL VERSION FROM OGRINFO>

Putting It All Together

If you want to run the whole process at once, we’ve collected all the commands above in the script below.

#!/usr/bin/env bash

sudo add-apt-repository ppa:ubuntugis/ppa && sudo apt-get update
sudo apt-get update
sudo apt-get install gdal-bin
sudo apt-get install libgdal-dev
export CPLUS_INCLUDE_PATH=/usr/include/gdal
export C_INCLUDE_PATH=/usr/include/gdal
pip install GDAL

1.4. How To. . . 7

http://www.sarasafavi.com/installing-gdalogr-on-ubuntu.html
https://pypi.python.org/pypi/GDAL

mothergeo Documentation, Release 0.0.1

Try It Out

Now that GDAL/OGR is installed, and you can program against it in Python, why not try it out? The code block below
is a sample from the Python OGR/GDAL Cookbook that gets all the layers in an Esri file geodatabase.

standard imports
import sys

import OGR
from osgeo import ogr

use OGR specific exceptions
ogr.UseExceptions()

get the driver
driver = ogr.GetDriverByName("OpenFileGDB")

opening the FileGDB
try:

gdb = driver.Open(gdb_path, 0)
except Exception, e:

print e
sys.exit()

list to store layers'names
featsClassList = []

parsing layers by index
for featsClass_idx in range(gdb.GetLayerCount()):

featsClass = gdb.GetLayerByIndex(featsClass_idx)
featsClassList.append(featsClass.GetName())

sorting
featsClassList.sort()

printing
for featsClass in featsClassList:

print featsClass

clean close
del gdb

Acknowledgements

Thanks to Sara Safavi and Paul Whipp for contributing some of the leg work on this.

8 Chapter 1. Development

https://pcjericks.github.io/py-gdalogr-cookbook/vector_layers.html#get-all-layers-in-an-esri-file-geodatabase
https://pcjericks.github.io/py-gdalogr-cookbook/index.html
http://www.sarasafavi.com/installing-gdalogr-on-ubuntu.html
https://gis.stackexchange.com/questions/28966/python-gdal-package-missing-header-file-when-installing-via-pip

mothergeo Documentation, Release 0.0.1

1.4.5 How To Use Mother’s logging Module

Mother has her own logging module which you are strongly encouraged to use within the project.

Using the loggable_class Decorator

When you create a new class, you can provide it with a Python logger just by decorating it with the
@loggable_class decorator (abbreviated to @loggable in the example). The code sample below will provide
a logger property to the decorated class.

import logging
import sys
(Let's alias the decorator's name for brevity's sake.)
from mothergeo.logging import loggable_class as loggable

We'll just create a simple test configuration so we can see logging occur.
logging.basicConfig(

stream=sys.stdout,
level=logging.DEBUG

)

@loggable
class MyUsefulClass(object):

def my_useful_method(self):
self.logger.debug("I'm using the logger that was provided by the decorator.")
print("You should see some logging output.")

if __name__ == "__main__":
my_useful_object = MyUsefulClass()
my_useful_method()

Overriding the Default Logger Name

By default, the name of the Python logger a class decorated with the @logger_class decorator creates a logger
based on the module in which the class is found, and the name of the class. You can override this behavior by providing
a logger_name property on the decorated class, as in the example below.

import logging
import sys
(Let's alias the decorator's name for brevity's sake.)
from mothergeo.logging import loggable_class as loggable

We'll just create a simple test configuration so we can see logging occur.
logging.basicConfig(

stream=sys.stdout,
level=logging.DEBUG

)

@loggable
class MyUsefulClass(object):

logger_name = 'alterate.logger.name' # Override the default logger name formula.

def my_useful_method(self):

(continues on next page)

1.4. How To. . . 9

mothergeo Documentation, Release 0.0.1

(continued from previous page)

self.logger.debug("The logger's name should reflect the 'logger_name'
→˓property.")

print("You should see some logging output.")

if __name__ == "__main__":
my_useful_object = MyUsefulClass()
my_useful_method()

See also:

If you’re interested in reading more about logging in Python, have a look at From the Hitchhicker’s Guide: Logging in
Python Libraries.

1.4.6 How To Run Your Own PyPI Server

This article includes some notes we hope will be helpful in setting up your own PyPI server for those times when you
need to share modules, but you’re not ready to publish them to the rest of the World.

The Server Side

There are a few different ways to host your repository. This article focuses on pypi-server which you can get from the
public package index.

The Client Side

Installing Modules with pip

One of the tricks to installing packages from your private repository is telling pip about it.

On Windows, you can place a pip.ini file at %APPDATA%\pip\pip.ini

[global]
extra-index-url = http://<host>:<port>/

[install]
trusted-host = <host>

Note: If you are using SSL with a verified certificate, you won’t need the trusted-host directive.

Publishing Updates

To keep life a little simpler, you probably want to modify your .pypirc file to include information about your new
repository server. You can do this by adding an alias for the server in your list of index-servers. When you’re finished,
your .pypirc file might look something like the one below assuming your give your new repository myownpypi as
an alias.

[distutils]
index-servers =

pypi

(continues on next page)

10 Chapter 1. Development

https://pypi.python.org/pypi/pypiserver
https://pypi.python.org/pypi/pypiserver
https://pypi.python.org/pypi/pypiserver

mothergeo Documentation, Release 0.0.1

(continued from previous page)

pypitest
myownpypi

[pypi]
username=<pypi_user>
password=<pypi_password>

[pypitest]
username=<pypitest_user>
password=<pypitest_password>

[myownpypi]
repository: http://<host>:<port>
username: <myownpypi_user>
password: <myownpypi_password>

Note: There are refinements to this process and we’ll update this document as we go along.

1.4.7 How to Exclude Folders in PyCharm

If you’re using PyCharm to develop, you may have noticed that it has some pretty righteous searching and refactoring
capabilities; however, there are likely to be some folders in your project’s directory tree that contain files you don’t
want PyCharm to look at when it comes time to search or perform automatic refactoring. Examples of these directories
include:

• the Python virtual environment (because you definitely don’t want to modify the stuff in there);

• the docs directory (because you don’t really need to refactor the stuff in there); and

• the lib directory (because nothing in there should depend on the code you’re writing, right?).

There may be others as well.

PyCharm allows you to exclude directories from consideration when searching and refactoring. You can exclude a
directory by right-clicking on it and selecting Mark Directory as → Excluded.

See also:

JetBrains’ website has an article called Configuring Folders Within a Content Root which has additional insights on
how and why you might want to configure the folders in the project.

1.4.8 How To Set Up a Virtual Python Environment (Linux)

virtualenv is a tool to create isolated Python environments. You can read more about it in the Virtualenv docu-
mentation. This article provides a quick summary to help you set up and use a virtual environment.

1.4. How To. . . 11

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/help/pycharm/configuring-folders-within-a-content-root.html
https://virtualenv.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/

mothergeo Documentation, Release 0.0.1

A Note About Python 3.6 and Ubuntu 16.04 LTS

If you’re running Ubuntu 16.04 LTS (or and earlier version), Python 3.5 is likely installed by default. Don’t remove it!
To get Python 3.6, follow the instructions in this section.

Add the PPA

Run the following command to add the Python 3.6 PPA.

sudo add-apt-repository ppa:jonathonf/python-3.6

Check for Updates and Install

Check for updates and install Python 3.6 via the following commands.

sudo apt-get update
sudo apt-get install python3.6

Now you have three Python version, use python to run version 2.7, python3 for version 3.5, and python3.6 for
version 3.6.

For more information on this subject, check out Ji m’s article How to Install Python 3.6.1 in Ubuntu 16.04 LTS.

Create a Virtual Python Environment

cd to your project directory and run virtualenv to create the new virtual environment.

The following commands will create a new virtual environment under my-project/my-venv.

cd my-project
virtualenv --python python3.6 venv

Activate the Environment

Now that we have a virtual environment, we need to activate it.

source venv/bin/activate

After you activate the environment, your command prompt will be modified to reflect the change.

Add Libraries and Create a requirements.txt File

After you activate the virtual environment, you can add packages to it using pip. You can also create a description of
your dependencies using pip.

The following command creates a file called requirements.txt that enumerates the installed packages.

pip freeze > requirements.txt

This file can then be used by collaborators to update virtual environments using the following command.

12 Chapter 1. Development

http://ubuntuhandbook.org/index.php/2017/07/install-python-3-6-1-in-ubuntu-16-04-lts/

mothergeo Documentation, Release 0.0.1

pip install -r requirements.txt

Deactivate the Environment

To return to normal system settings, use the deactivate command.

deactivate

After you issue this command, you’ll notice that the command prompt returns to normal.

Acknowledgments

Much of this article is taken from The Hitchhiker’s Guide to Python. Go buy a copy right now.

1.4.9 How To Set Up a Virtual Python Environment (Windows)

virtualenv is a tool to create isolated Python environments. You can read more about it in the Virtualenv docu-
mentation. This article provides a quick summary to help you set up and use a virtual environment.

Where’s My Python?

Sometimes the trickiest part of setting up a virtual environment on Windows is finding your python distribution. If the
installer didn’t add it to your PATH variable, you may have to go looking. If you downloaded and installed python
from python.org and accepted all the defaults during installation, python.exe may be found in one of the following
locations:

64-bit (Preferred)

C:\Users\%username%\AppData\Local\Programs\Python\Python36\python.exe

32-bit

C:\Users\%username%\AppData\Local\Programs\Python\Python36-32\python.exe

Install virtualenv

If you try to run virtualenv and find it isn’t present, you can install it using pip.

pip install virtualenv

virtualenv.exe will likely now be found in your python installation directory under the Scripts subdirectory.

1.4. How To. . . 13

http://python-guide-pt-br.readthedocs.io/en/latest/
https://virtualenv.pypa.io/en/stable/
https://virtualenv.pypa.io/en/stable/
https://www.python.org
https://docs.python.org/3/installing/index.html#basic-usage

mothergeo Documentation, Release 0.0.1

Create a Virtual Python Environment

cd to your project directory and run virtualenv to create the new virtual environment.

The following commands will create a new virtual environment under my-project/my-venv.

cd my-project
virtualenv --python C:\Path\To\Python\python.exe venv

Note: If Windows cannot find virtualenv.exe, see Install virtualenv. You can either add the executable’s
home directory to your PATH variable, or just include the full path in your command line. If you aren’t sure where
python.exe is installed, see Where’s My Python?.

Activate the Environment

Now that we have a virtual environment, we need to activate it.

.\venv\Scripts\activate

After you activate the environment, your command prompt will be modified to reflect the change.

Add Libraries and Create a requirements.txt File

After you activate the virtual environment, you can add packages to it using pip. You can also create a description of
your dependencies using pip.

The following command creates a file called requirements.txt that enumerates the installed packages.

pip freeze > requirements.txt

This file can then be used by collaborators to update virtual environments using the following command.

pip install -r requirements.txt

Deactivate the Environment

To return to normal system settings, use the deactivate command.

deactivate

After you issue this command, you’ll notice that the command prompt returns to normal.

14 Chapter 1. Development

mothergeo Documentation, Release 0.0.1

Acknowledgments

Much of this article is taken from The Hitchhiker’s Guide to Python. Go buy a copy right now.

1.5 Miscellany

1.5.1 From the Hitchhicker’s Guide: Logging in Python Libraries

Note: If you’re wondering how Mother likes to handle logging, take a look at How To Use Mother’s logging Module.

It is, of course, desirable for library modules to perform logging. However, we generally want to maintain consistency
and allow the consuming application to perform logging configuration. This article details a strategy for achieving
those goals.

A Bit of Loging Boilerplate

From The Hitchhiker’s Guide to Python, Chapter 4:

Do not add any handlers other than NullHandler to your library’s loggers. Place the following code in
your project’s top-level __init__.py.

Set default logging handler to avoid "No handler found" warnings.
import logging
try: # Python 2.7+

from logging import NullHandler
except ImportError:

class NullHandler(logging.Handler):
def emit(self, record):

pass

logging.getLogger(__name__).addHandler(NullHandler())

Acknowledgments

Much of this article is taken from The Hitchhiker’s Guide to Python. Go buy a copy right now.

1.5. Miscellany 15

http://python-guide-pt-br.readthedocs.io/en/latest/
http://python-guide-pt-br.readthedocs.io/en/latest/
http://python-guide-pt-br.readthedocs.io/en/latest/

mothergeo Documentation, Release 0.0.1

16 Chapter 1. Development

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

17

	Development
	Python Module Dependencies
	Design Considerations
	Source Control
	How To…
	Miscellany

	Indices and tables

